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Optimal Design of Truss Structures by Rescaled Simulated 
Annealing 

Jungsun Park*, Miran Ryu 
School o f  Aerospace and Mechanical Engineering, Hankuk  Aviation University, 

200-1, Hwajon-dong, Deokyang-gu, Koyang-si, Kyonggi-do, 412-791, Korea 

Rescaled Simulated Annealing (RSA) has been adapted to solve combinatorial optimization 

problems in which the available computational resources are limited. Simulated Annealing 

(SA) is one of the most popular combinatorial optimization algorithms because of its con- 

venience of use and because of the good asymptotic results of convergence to optimal solutions. 
However, SA is too slow to converge in many problems. RSA was introduced by extending the 

Metropolis procedure in SA. The extension rescales the state's energy candidate for a transition 

before applying the Metropolis criterion. The rescaling process accelerates convergence to the 

optimal solutions by reducing transitions from high energy local minima. In this paper, struc- 

tural optimization examples using RSA are provided. Truss structures of  which design variables 

are discrete or continuous are optimized with stress and displacement constraints. The opti- 

mization results by RSA are compared with the results from classical SA. The comparison shows 

that the numbers of optimization iterations can be effectively reduced using RSA. 
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1. Introduction 

The gradient-based optimization techniques 

(Rao, 1996) are classical optimization methods. 

The gradient information in the classical opti- 

mization methods is very difficult to find in many 

structural design problems. The classical opti- 

mization methods are not suitable to the opti- 

mization with discrete design variables because 

the discrete optimization functions are not dif- 

ferentiable. The classical optimization methods 

may provide several local optimum values to 

multiple local optimum problems. Therefore, 

Simulated Annealing (Aarts and Kost, 1989), a 

stochastic search algorithm with randomized vari- 
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ables, is used to overcome the gradient limita- 

tions in the classical gradient-based optimization 

methods. 

The concept behind the Simulated Annealing 

algorithm was derived from statistical mechanics 

and motivated by an analogy to the behavior 

of physical annealing. Simulated Annealing has 

been applied to the traveling salesman problem, 

which is a typical example of combinatorial opti- 

mization problems (Gelatt et al., 1983; Cerny, 

1985). The Simulated Annealing algorithm has 

been extensively described for general applica- 

tions (Aarts and Laarhoven, 1987). A mult i-ob- 

jective constrained truss structure has been opti- 

mized for weight, displacement and natural fre- 

quency (Bennage and Dhingra, 1995). The Si- 

mulated Annealing algorithm has been applied 

to a three-dimensional, six-story, unsymmetrical 

steel frame (Bailing, 1991). Topology optimiza- 
tion for maximum natural frequency was per- 

formed by Cui, Tai and Wang (2000). Distor- 
tion and internal forces in truss structures have 
been minimized by Kincaid and Padula (1990). 
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However, SA is slow to converge to an optimal 
value. For improving convergence speed, Lundy 
et al. have suggested a more elaborate cooling 
schedule (Lundy, 1986). Parallel Simulated An- 
nealing algorithms have been suggested for sever- 
al applications (Aarts and Kost, 1989). Adaptive 

Simulated Annealing (ASA) has been propos- 
ed for practical optimization (Ingber, 1995). For 

faster convergence, new algorithms have been 

developed to devise the necessary cooling sche- 
dules. On the other hand, Rescaled Simulated 
Annealing does not use the cooling schedule. 
To reduce computational effort, RSA has been 
utilized by manipulating the cooling schedule 
(Herault, 2000). 

The concept of the RSA algorithm is the gen- 
eralization of  the Metropolis criterion in SA, 
which decides whether the current energy state 

is accepted or whether to go to the next state. 
Instead of going to a low energy (objective func- 
tion) state, it allots energy around the target 
energy at each temperature step. The target energy 
varies with temperature change. As numerical 

examples of the Rescaled Simulated Annealing 
algorithm, truss structures are optimized. The 

optimum results and the numbers of function 
evaluations by the Rescaled Simulated Annealing 
algorithm are compared to those by the conven- 
tional Simulated Annealing algorithm. 

2. Rescaled Simulated Annealing 

The Rescaled Simulated Annealing algorithm 
(RSA) is derived from the physical annealing 
process that is performed in order to obtain the 
minimum (ground) energy state. The ground 
state is obtained only if the temperature (design 
variable) of the heat bath is increased to the 
maximum value at which solid melts and is de- 
creased very slowly until the particles arrange 
themselves in the ground state of the solid. In 
the ground state the particles are arranged 
structurally and the energy of  the system is 
minimal (meta-stable state). Thermodynamics 
of the annealing process can be expressed as 
the Boltzmann Probability Distribution. The 
Boltzmann Probability Distribution (Aart and 

Kost, 1989) of the solid in state / with energy 
Ei at temperature T can be written as Eq. (1). 

exp( ) P T { X = i } = Z ( T )  

where X is a stochastic variable. 
Z ( T )  is the partition function. 

- E ;  
Z ( T ) = j ~ .  exP(k~--~)  (2) 

During the physical annealing process, the mini- 
mum energy state corresponds to the minimum 
objective function in RSA. Acceptance criterion 
(Metropolis criterion) of Rescaled Simulated 
Annealing determines whether or not the next 

state is accepted from the current state by ap- 
plying the following acceptance probability 

(Aart and Laarhoven, 1987) 

Aij(c)  = exp if A E o > 0  (3) 

AE , j=  ( 4 ~  - ~ )  2 -  (fE-7~ - ~ )  z (4) 

Etar~et = a" c z (5) 

where c is the control parameter (temperature 
parameter) and parameter a is experimentally 

determined from the initial temperature step. 
If  the objective function of  current state i 

is larger than that of the next state j, the next 
state will be accepted. Otherwise, a random num- 

ber is generated between 0 and 1. The generated 
random number is compared with the acceptance 
probability. When the acceptance probability is 

larger than the random number, the next state 
instead of  the current state is accepted to escape 
the local optimum. 

To illustrate the rescaling of the energy, an 
example of one-dimensional functions in Eq. (6), 

is shown in Fig. 1. The deformation of the energy 
landscape of Eq. (7) is shown in Fig. 2. as a 
function of the target energy. If  the target energy 
is zero, the rescaled energy is the original one. 

F ( x ) = ( 8 + l l . 5 - x l × s i n ( 2 × x ) / x )  (6) 

F(x,  Et~r,~t) (7) 

=(~/8+[1.5-xl×sin(2×x) /x  - E~-~r~ ) z 



1514 Jungsun Park and Miran Ryu 

10.5 ~! 

, !  

 ,x°i 'i 
i , \  & /2 

8,5[ ! / "~ ~ '1 

aI \, / ' i i 

/ / 

"\/ 'V \/ ¢ 
0 2 4 6 8 I0 12 14 16 

X 

Fig. 1 Example of a 1-D function 

/,, 
/ \ 

, / / 

' \ /  

,,'I 
/ 
] 

1 0 0  

! ..... i ....... : ,-.. 

0 0 .  

-,(~ , 

20 

-1130: 
20 

'20 

Target energy 

0 0 

Fig. 2 Example of rescaled energy 

At high target energies, the minimum values 

of the rescaled energy correspond to the maxi- 

mum values of the original one. If  the target 

energy is lower than the original energy, the 

minimum values of the rescaled energy corre- 

spond to the minimum values of the original 

energy. As the target energy is reduced, the 

rescaled energy is converged toward the original 

one. More precisely, when the target energy be- 

comes smaller than the least energy, the mini- 

mum values of the rescaled energy landscape 

are also minimum values in the original energy 

landscape. Therefore, the optimal states of the 

problems with rescaled energies are also optimal 

in the original energy landscape. Furthermore, 
the local minimum values of  the rescaled energy 

landscape are shallower than in the original 

landscape. For  convergence of the rescaled ener- 

gy, the target energy is set lower than the ori- 

ginal energy. The parameter a was chosen so that 

the initial target energy is near the mean energy 

of the states. 

During the annealing process, after N x N S  x 
N T  function evaluations, temperature is changed 

by the following Eq. (8) 

T ( i +  1) = R T X  T( i )  (8) 

where R T is the temperature reduction factor, 

N is the number of design variables, NS is the 

number of cycles (temperature changes) and N T  
indicates the number of iterations before tem- 

perature changes. After N x NS function evalua- 

tions, each element of  step length vector, which 

is related to the neighborhood of  design vari- 

ables, is adjusted. 

Rescaled Simulated Annealing is terminated 

when the number of  function evaluations is grea- 

ter than the maximum evaluation or the tem- 

perature is sufficiently low. In this study, for the 

termination of numerical iterations, the small 

error tolerance (EPS) is taken. The maximum 

evaluation is set very large to avoid being ter- 

minated before optimum. Error tolerance is de- 

fined as 

F(X,+I) - F(Xi)  <-EPS (9) 

In this study, EPS is set to 10 -3 and NEPS 

(number of final function values) to 4, which is 

used to decide termination. The flowchart of  

Rescaled Simulated Annealing is shown in 

Fig. 3. 

Rescaled Simulated Annealing is an origin- 

ally unconstrained optimization method. The un- 

constrained optimization problems are changed 

to constrained optimization problems by intro- 

ducing the penalty function. The penalty function 

imposes a penalty to a pseudo-objective function 
(10) considering the constraint violation 

m 
P = F ( X )  + ~R,O(g~(X) ) (10) 

i = l  

(gj ( X ) )  =(g~- (X))2  (11) 

(g~ (S ) )=(g~(? )  if g / ( X )  >0'~ 
if g j ( X )  <_0! (12) 

where F is objective function, ~ is penalty func- 

tion, g~ ( g )  are constraints, and m is the number 
of constraints. 
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3. Optimization of Truss 
Structure by RSA 

Truss structures are presented for the struc- 
tural optimization examples using RSA. The ob- 

jective functions are the weights of the struc- 

tures. The design variables are the cross section- 

al areas of truss members. The constraints are 

imposed on the allowable stresses of the truss 
members and the maximum allowable displace- 

ments at the joints. The objective function and 

the constraints are expressed by the following 

equations 

n 
Minimize : F = c~=tpAili (13) 

Subjec t to :  a / _ l ~ 0  i = l , - " ,  nt (14) d~z 

ws 1~0  j = l ,  .. ' ,  na (15) 
Wrnax 

where n means the number of design variables 

Ai ,  nt the number of truss members and na the 

number of nodes with displacements constraints. 

3.1 Ten-bar  truss 

The ten-bar truss shown in Fig. 4 is opti- 
mized for both continuous and discrete design 

l* 360 in ,,, 360 In 

F=lOOk 
Fig. 4 Ten bar truss 

variables, respectively. The same stress and dis- 

placement constraints are imposed on the con- 

tinuous and discrete problems. The allowable 

stress ffa=25000psi is applied for all members. 

The maximum allowable displacement Wm~x = 
+-2in is applied for nodal displacements in 

x-  and y-directions. For  all members, the same 

weight density (p=O.Ollb/in3), and Young's 

modulus (107psi) are used. In the discrete design 

variable problems, candidate cross sectional areas 

are the following 42 discrete design variables used 

by Bennage and Dhingra (1995). 

[1.62, 1.8, 1.99, 2.13, 2.38, 2.62, 2.63, 2.88, 2.93, 

3.09, 3.13, 3.38, 3.47, 3.55, 3.63, 3.84, 3.87, 3.88, 

4.18, 4.22, 4.49, 4.59, 4,80, 4.97, 5.12, 5.74, 7.22, 

7.97, 11.5, 13.5, 13.9, 14.2, 15.5, 16.0, 16.9, 18.8, 

19.9, 22.0, 22.9, 26.5, 30.0, 33.5] in z 
The continuous and discrete optimization res- 

ults from RSA and SA are shown in Table 1--2. 

The optimization results from the classical gra- 

dient based method are added in Table 1 for 

verification of the present work. As shown in 

Table I, the optimal weights of RSA and SA are 

close to those of the gradient based optimization 

method (Haug and Arora, 1979). The number of 

function evaluations in the optimization using 

RSA is reduced 19.54% in continuous variable 
optimization, and 11.27% in discrete variable 

optimization in comparison to SA. In the con- 

tinuous optimization shown in Table 1, the 
optimal weight from RSA is 6.7% less than the 

optimal weight from SA. In the discrete opti- 
mization shown in Table 2, the optimal weight 
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from RSA is 3.0% less than the optimal weight 

from SA. The optimization by RSA requires a 

smaller number of iterations and produces a bet- 

ter quality of optimization results in comparison 

to SA. 

Table 1 10-bar truss optimization results with con- 
tinuous variables (in z) 

Initial 
RSA SA Haug* 

Design 

Ax 33.5 28.23 28.2 30.03 

A2 10.0 0,10 2.83 0.10 

As 30.0 23.01 3 0 . 0 6  23.27 

A4 30.0 12.78 13.37 15.28 

As 10.0 0.10 0.10 0.10 

A~ 10.0 0.10 1.86 0.55 

A7 20.0 8.86 13.14 7.46 

An 20.0 25.39 2 1 . 0 8  21.19 

A9 30.0 21.02 17.77 21.61 

A10 10.0 0.10 2.39 0.10 

Objective 8518.94 5136.12 5482.88 5051.60 
function (lb) 

Number of function 
4160 5170 NA 

evaluations 

(1979) *Results from Haug and Arora 

Table 2 10-bat truss optimization results with dis- 
crete variables (in 2) 

Initial Design 

Az 33.5 

A~ 10.0 

A3 30.0 

eL 30.0 

As lO.O 

A6 10.0 

A7 20.0 

A~ 20.0 

A9 30.0 

Axo 10.0 

Objective 8518.94 
function (lb) 

Number of function 
evaluations 

RSA SA 

33.5 22.0 

1.62 2,62 

22.0 26.5 

11.5 14.2 

1.62 1.62 

1.99 2.63 

14.2 16.0 

20.0 19.9 

22.9 26.5 

3.63 3.55 

5692.15 5862.15 

2440 2750 

3.2  T w e n t y -  f i v e  b a r  t r u s s  

A twenty-five bar truss structure is shown in 

Fig. 5. The allowable stress aa~-4OOOOpsi is ap- 

plied to all members. The maximum allowable 

displacements wmx=--+-0.35in is applied for 

nodal displacement in the x and y directions. 

The loadings are applied as shown in Table 3. 

Design variables of the twenty-five bar truss 

structure are cross sectional areas. The twenty- 

five bar truss structure is symmetric with respect 

to the Y-Z axis. Design variables of the truss 

structure are reduced by symmetry. The rela- 

tionship of cross sectional areas and design 

variables is shown in Table 4, Similar to the 

ten-bar truss, the twenty five-bar truss structure 

is optimized for both continuous and discrete 

variables, respectively. In the discrete variable 

optimization, candidate cross sectional areas 

are E0.1i ( i=I ,  .-., 26), 2.8, 3.0, 3.2, 3.4]in z. The 

optimization results of the 25-bar truss struc- 

ture are shown in Table 5--6. The 25-bar truss 

Table 3 Loading conditions 

Joint Fx(Zb) 
1000 

500 

600 

Fy(/b) 
10000 

10000 

F,(tb) 
- -  10000 

--  10000 

100 In 

2O0 In 

~75 In 
Z 

11 

9 a 

I 75 ~23 

~4 

Fig. 5 Twenty-five bar truss 
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T a b l e  4 Relationship between design variables and 
truss members 

Design variables Truss members 

1 1 

2 2 ,3 ,4 ,5  

3 6 ,7 ,8 ,9  

4 10, 11 

5 12, 13 

6 14, 15, 16, 17 

7 18, 19, 20, 21 

8 22, 23, 24, 25 

Table 5 25-bar truss optimization results with con- 
tinuous variables (in 2) 

Initial 
RSA SA Haug* 

Design 

A~ 1.0 0.10 0.10 0.01 

A2 3.4 0.14 0.46 2.04 

A3 3.4 3.34 3.35 2.99 

A4 1.0 0.10 0.10 0.01 

As 3.4 0.89 0.54 0.01 

A6 2.0 0.99 0.75 0.68 

A7 3.4 1.5 1.93 1.62 

A8 3.4 3.04 2.81 2.67 

Objective 969.0108 507.14 522.16 545.04 
function (lb) 

Number of function 
9200 11350 NA 

evaluations 

* Results from Haug and Arora (1979) 

T a b l e  6 25 bar truss optimization results with dis- 
crete variables (in 2) 

Initial Design 

A1 1.0 

A2 3.4 

As 3.4 

A4 1.0 

As 3.4 

2.0 

A~ 3.4 

Aa 3.4 

Objective 969.0108 
function (lb) 

Number of function 
evaluations 

RSA SA 

0.3 0.2 

2.8 3.2 

2.1 1.6 

0.2 0.2 

0.3 0.5 

0.8 1.1 

0.8 0.3 

3.3 3.4 

537.73 530.35 

4975 6375 

optimization results from the classical gradient 

based method are added in Table 5 tbr veri- 

fication. As shown in Table 5, the optimal 

weights of RSA and SA are close to those of 

the gradient based optimization method (Haug 

and Arora, 1979). 

The number of function evaluations in the 

optimization using RSA is reduced 18.94% in 

continuous variable optimization, and 21.96% 

in discrete variable optimization in comparison 

to SA. In the continuous optimization shown 

in Table 5, the optimal weight from RSA is 

2,9~ less than SA. In the discrete optimization 

shown in Table 6, the optimal weight from 

RSA is 1.3% larger than the optimal weight 

from SA. The optimization by RSA requires 

a smaller number of iterations and produces 

close optimization results in comparison to SA. 

4. Conclusions 

In this paper, RSA has been introduced to 

reduce computational efforts in SA. The truss 

structures with both continuous and discrete 

design variables have been optimized using 

RSA and SA. Objective functions are structural 

weights and design variables are cross sectional 

areas of truss members. Constraints are allow- 

able stresses in members and allowable dis- 

placement at joints. The continuous optimiza- 

tion results have been compared for the veri- 

fication of the present work to the results from 

the classical gradient optimization method. The 

present optimization results are close to the pre- 

vious works. Optimization results of RSA and 

SA have been compared to each other. The 

optimization results of RSA are somewhat bet- 

ter than the results of SA. The function evalua- 

tion numbers of RSA are smaller than SA. The 

function evaluations have been reduced by RSA. 

It is shown that RSA is well applied to the opti- 

mization of truss structures and can be extended 

to the optimization of general structures. 
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